The following polygenic scores are included in HRS Polygenic Score Data (PGS).
Phenotype of GWAS meta-analysis | GWAS meta-analysis citation | Release 1 (May 2017) | Release 2 (April 2018) | Release 3 (Oct 2018) | Release 4 (Feb 2020) |
---|---|---|---|---|---|
Educational Attainment 2* | Okbay (SSGAC, 2016) | 2006-2012 | 2006-2012 | 2006-2012 | |
Height | Wood (GIANT, 2014) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Body Mass Index (BMI)** | Locke (GIANT, 2015) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Waist Circumference (WC) | Shungin (GIANT, 2015) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Waist-to-Hip Ratio (WHR) | Shungin (GIANT, 2015) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Diastolic Blood Pressure (DBP) | Ehret (ICBP, 2011) | 2006-2010 | |||
Systolic Blood Pressure (SBP) | Ehret (ICBP, 2011) | 2006-2010 | |||
Pulse Pressure (PP) | Wain (ICBP, 2011) | 2006-2010 | |||
Mean Arterial Pressure (MAP) | Wain (ICBP, 2011) | 2006-2010 | |||
Alzheimer's Disease (AD) | Lambert (IGAP, 2013) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
General Cognition* | Davies (CHARGE, 2015) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Schizophrenia | Ripke (PGC, 2014) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Smoking Initiation (ever/never) | Furberg (TAG, 2010) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Subjective Wellbeing* | Okbay (SSGAC, 2016) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Neuroticism* | Okbay (SSGAC, 2016) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Depressive Symptoms* | Okbay (SSGAC, 2016) | 2006-2010 | 2006-2012 | 2006-2012 | 2006-2012 |
Longevity* | Broer (CHARGE, 2015) | 2006-2012 | 2006-2012 | 2006-2012 | |
Number of Cigarettes Smoked per Day (CPD) | Furberg (TAG, 2010) | 2006-2012 | 2006-2012 | 2006-2012 | |
Coronary Artery Disease (CAD) | Schunkert (CARDIoGRAM, 2011) | 2006-2012 | 2006-2012 | 2006-2012 | |
Myocardial Infarction (MI) | Nikpay (CARDIoGRAMplusC4D, 2015) | 2006-2012 | 2006-2012 | 2006-2012 | |
Type II Diabetes (T2D) | Morris (DIAGRAM, 2012) | 2006-2012 | 2006-2012 | 2006-2012 | |
Attention Deficit/Hyperactivity Disorder (ADHD) PGC 2010 | Neale (PGC, 2010) | 2006-2012 | 2006-2012 | 2006-2012 | |
Attention Deficit/Hyperactivity Disorder (ADHD) PGC 2017 | Demontis (PGC, 2017) | 2006-2012 | 2006-2012 | 2006-2012 | |
Autism | Anney (PGC, 2017) | 2006-2012 | 2006-2012 | 2006-2012 | |
Bipolar Disorder (BIP) | Sklar (PGC, 2011) | 2006-2012 | 2006-2012 | 2006-2012 | |
Mental health cross disorder | Smoller (PGC, 2013) | 2006-2012 | 2006-2012 | 2006-2012 | |
Age at Menarche | Perry (ReproGen, 2014) | 2006-2012 | 2006-2012 | 2006-2012 | |
Age at Menopause | Day (ReproGen, 2015) | 2006-2012 | 2006-2012 | 2006-2012 | |
Plasma Cortisol | Bolton (CORNET, 2014) | 2006-2012 | 2006-2012 | 2006-2012 | |
Major Depressive Disorder (MDD) | Ripke (PGC, 2013) | 2006-2012 | 2006-2012 | 2006-2012 | |
Extraversion | van den Berg (GPC, 2016) | 2006-2012 | 2006-2012 | 2006-2012 | |
Antisocial Behavior | Tielbeek (BROAD, 2017) | 2006-2012 | 2006-2012 | ||
Educational Attainment 3* | Lee (SSGAC, 2018) | 2006-2012 | 2006-2012 | ||
Obsessive Compulsive Disorder (OCD) | (IOCDF-GC and OCGAS, 2017) | 2006-2012 | 2006-2012 | ||
Age at first birth (combined, female, male) | Barban (Sociogenome, 2016) | 2006-2012 | 2006-2012 | ||
Number children ever born (combined, female, male) | Barban (Sociogenome, 2016) | 2006-2012 | 2006-2012 | ||
Major Depressive Disorder 2 (MDD2) | Wray (PGC, 2018) | 2006-2012 | 2006-2012 | ||
Post Traumatic Stress Disorder (PTSD: combined, European, African) | Duncan (PGC, 2018) | 2006-2012 | 2006-2012 | ||
High Density Lipoprotein (HDL) | Willer (GLGC, 2013) | 2006-2012 | 2006-2012 | ||
Low Density Lipoprotein (LDL) | Willer (GLGC, 2013) | 2006-2012 | 2006-2012 | ||
Total Cholesterol (TC) | Willer (GLGC, 2013) | 2006-2012 | 2006-2012 | ||
Anxiety (factor score, case-control) | Otowa (ANGST, 2016) | 2006-2012 | 2006-2012 | ||
General Cognition 2* | Davies (CHARGE, 2018) | 2006-2012 | |||
Blood urea nitrogen (BUN) - European ancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
Blood urea nitrogen (BUN) - transancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
Chronic kidney disease (CKD) - European ancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
Chronic kidney disease (CKD) - transancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
eGFR - European ancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
eGFR - transancestry GWAS | Wuttke (CKDGen, 2019) | 2006-2012 | |||
Diastolic blood pressure (DBP)* | Liang (COGENT, 2017) | 2006-2012 | |||
Hypertension (HTN)* | Liang (COGENT, 2017) | 2006-2012 | |||
Pulse pressure (PP)* | Liang (COGENT, 2017) | 2006-2012 | |||
Systolic blood pressure (SBP)* | Liang (COGENT, 2017) | 2006-2012 | |||
Body Mass Index 2 (BMI2)** | Yengo (GIANT, 2018) | 2006-2012 | |||
Height 2** | Yengo (GIANT, 2018) | 2006-2012 | |||
Age at smoking initiation (AI)* | Liu (GSCAN, 2019) | 2006-2012 | |||
Cigarettes per day (CPD)* | Liu (GSCAN, 2019) | 2006-2012 | |||
Alcoholic drinks per week (DPW)* | Liu (GSCAN, 2019) | 2006-2012 | |||
Smoking cessation (SC)* | Liu (GSCAN, 2019) | 2006-2012 | |||
Smoking initiation (SI)* | Liu (GSCAN, 2019) | 2006-2012 | |||
Lifetime cannabis use | Pasman (ICCUKB, 2019) | 2006-2012 | |||
Alzheimer's disease - pT=1 with APOE/TOMM40 region | Kunkle (IGAP, 2019) | 2006-2012 | |||
Alzheimer's disease - pT=1 without APOE/TOMM40 region | Kunkle (IGAP, 2019) | 2006-2012 | |||
Alzheimer's disease - pT=0.01 with APOE/TOMM40 region | Kunkle (IGAP, 2019) | 2006-2012 | |||
Alzheimer's disease - pT=0.01 without APOE/TOMM40 region | Kunkle (IGAP, 2019) | 2006-2012 | |||
HbA1c - African ancestry GWAS | Wheeler (MAGIC, 2017) | 2006-2012 | |||
HbA1c - European ancestry GWAS | Wheeler (MAGIC, 2017) | 2006-2012 | |||
Alchol dependence - unrelated, European ancestry GWAS | Walters (PGC, 2018) | 2006-2012 | |||
Educational Attainment 3* with 23andMe GWAS | Lee (SSGAC, 2018) | 2006-2012 |
*The GWAS Meta-analysis was re-analyzed without the HRS cohort to produce weights independent of the HRS contribution
**The GWAS Meta-analysis includes HRS and has not been re-run without the HRS
All other GWAS did not include HRS
References
Okbay, A., Beauchamp, J. P., Fontana, M. A., Lee, J. J., Pers, T. H., Rietveld, C. A., ... & Oskarsson, S. (2016). Genome-wide association study identifies 74 loci associated with educational attainment. Nature, 533(7604), 539.
Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., ... & Amin, N. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. Nature Genetics, 46(11), 1173-1186.
Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R., ... & Croteau-chonka, D. C. (2015). Genetic studies of body mass index yield new insights for obesity biology. Nature, 518(7538), 197-206.
Shungin, D., Winkler, T. W., Croteau-Chonka, D. C., Ferreira, T., Locke, A. E., Mägi, R., ... & Workalemahu, T. (2015). New genetic loci link adipose and insulin biology to body fat distribution. Nature, 518(7538), 187.
Ehret, G. B., Munroe, P. B., Rice, K. M., Bochud, M., Johnson, A. D., Chasman, D. I., ... & Okamura, T. (2011). Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature, 478(7367), 103-109.
Wain, L. V., Verwoert, G. C., O'Reilly, P. F., Shi, G., Johnson, T., Johnson, A. D., ... & Ehret, G. B. (2011). Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics, 43(10), 1005-1011.
Lambert JC, Ibrahim-Verbaas CA, Harold D, et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nature Genetics. 2013;45(12):1452-1458.
Davies, G., Armstrong, N., Bis, J. C., Bressler, J., Chouraki, V., Giddaluru, S., ... & Van Der Lee, S. J. (2015). Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N= 53,949). Molecular Psychiatry, 20(2), 183.
Ripke, S., Neale, B. M., Corvin, A., Walters, J. T., Farh, K. H., Holmans, P. A., ... & Pers, T. H. (2014). Biological insights from 108 schizophrenia-associated genetic loci. Nature, 511(7510), 421-427.
Tobacco and Genetics Consortium. (2010). Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nature Genetics, 42(5), 441-447.
Okbay, A., Baselmans, B. M., De Neve, J. E., Turley, P., Nivard, M. G., Fontana, M. A., ... & Gratten, J. (2016). Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nature Genetics, 48(6), 624-633.
Broer L, Buchman, A. S., Deelen, J., Evans, D. S., Faul, J. D., Lunetta, K. L., ... & Yu, L. (2014). GWAS of longevity in CHARGE consortium confirms APOE and FOXO3 candidacy. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 70(1), 110-118.
Schunkert, H., König, I. R., Kathiresan, S., Reilly, M. P., Assimes, T. L., Holm, H., ... & Absher, D. (2011). Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nature Genetics, 43(4), 333-338.
CARDIoGRAMplusC4D Consortium. (2015). A comprehensive 1000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nature Genetics, 47(10), 1121-1130.
Morris, A. P., Voight, B. F., Teslovich, T. M., Ferreira, T., Segre, A. V., Steinthorsdottir, V., ... & Prokopenko, I. (2012). Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nature Genetics, 44(9), 981-990.
Neale, B. M., Medland, S. E., Ripke, S., Asherson, P., Franke, B., Lesch, K. P., ... & Daly, M. (2010). Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 49(9), 884-897.
Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., ... Neale, B. M. (2017). Discovery Of The First Genome-Wide Significant Risk Loci For ADHD. BioRxiv. https://doi.org/10.1101/145581
Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium, Anney, R. J., Ripke, S., Anttila, V., Grove, J., Holmans, P., ... & Neale, B. (2017). Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24. 32 and a significant overlap with schizophrenia. Molecular Autism, 8, 1-17.
Psychiatric GWAS Consortium Bipolar Disorder Working Group. (2011). Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nature Genetics, 43(10), 977-983.
Cross-Disorder Group of the Psychiatric Genomics Consortium. (2013). Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. The Lancet, 381(9875), 1371-1379.
Perry, J. R., Day, F., Elks, C. E., Sulem, P., Thompson, D. J., Ferreira, T., ... & Albrecht, E. (2014). Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature, 514(7520), 92-97.
Day, F. R., Ruth, K. S., Thompson, D. J., Lunetta, K. L., Pervjakova, N., Chasman, D. I., ... Murray, A. (2015). Large-scale genomic analyses link reproductive ageing to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nature Genetics, 47(11), 1294–1303. http://doi.org/10.1038/ng.3412
Bolton, J. L., Hayward, C., Direk, N., Lewis, J. G., Hammond, G. L., Hill, L. A., ... & Rudan, I. (2014). Genome wide association identifies common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and corticosteroid binding globulin. PLoS Genetics, 10(7), e1004474.
Ripke, S., Wray, N. R., Lewis, C. M., Hamilton, S. P., Weissman, M. M., Breen, G., ... & Heath, A. C. (2013). A mega-analysis of genome-wide association studies for major depressive disorder. Molecular Psychiatry, 18(4), 497-511.
van den Berg, S. M., de Moor, M. H. M., Verweij, K. J. H., Krueger, R. F., Luciano, M., Arias Vasquez, A., ... Boomsma, D. I. (2016). Meta-analysis of Genome-Wide Association Studies for Extraversion: Findings from the Genetics of Personality Consortium. Behavior Genetics, 46(2), 170–182. https://doi.org/10.1007/s10519-015-9735-5
Duncan, L. E., Ratanatharathorn, A., Aiello, A. E., Almli, L. M., Amstadter, A. B., Ashley-Koch, A. E., ... Koenen, K. C. (2018). Largest GWAS of PTSD (N=20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Molecular Psychiatry, 23(3), 666–673. http://doi.org/10.1038/mp.2017.77
PGC-MDD2, Wray, Ripke, Mattheisen, Trzaskowski et al. (2018) Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nature Genetics, 2018.
Lee, J.J. et al. Gene discovery and polygenic prediction from a 1.1-million-person GWAS of educational attainment. Forthcoming in Nat. Genet. (2018).
Willer, C.J., Schmidt, E.M., Sengupta, S., Peloso, G.M., Gustafsson, S., ... & Global Lipids Genetic Consortium. (2013) Discovery and Refinement of Loci Associated with Lipid Levels. Nat Genet. 45(11), 1274-1283. doi:10.1038/ng.2797.
Barban, N., Jansen, R., de Vlaming, R., Vaez, A., Mandemakers, J. J., Tropf, F. C., ... Mills, M. C. (2016). Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nature Genetics, 48(12), 1462–1472. http://doi.org/10.1038/ng.3698
Otowa, T., Hek, K., Lee, M., Byrne, E. M., Mirza, S. S., Nivard, M. G., ... Hettema, J. M. (2016). Meta-analysis of genome-wide association studies of anxiety disorders. Molecular Psychiatry, 21(10), 1391–1399. http://doi.org/10.1038/mp.2015.197
Tielbeek, J. J., Johansson, A., Polderman, T. J. C., Rautiainen, M.-R., Jansen, P., Taylor, M., ... Posthuma, D. (2017). Genome-Wide Association Studies of a Broad Spectrum of Antisocial Behavior. JAMA Psychiatry, 74(12), 1242–1250. https://doi.org/10.1001/jamapsychiatry.2017.3069
International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS). (2017). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Molecular Psychiatry. https://doi.org/10.1038/mp.2017.154
Davies, G., Lam, M., Harris, S. E., Trampush, J. W., Luciano, M., Hill, W. D., ... Deary, I. J. (2018). Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 9, 2098. http://doi.org/10.1038/s41467-018-04362-x
Wuttke M, Li Y, Li M, et al. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet. 2019;51(6):957–972. doi:10.1038/s41588-019-0407-x
Liang J, Le TH, Edwards DRV, et al. Single-trait and multi-trait genome-wide association analyses identify novel loci for blood pressure in African-ancestry populations [published correction appears in PLoS Genet. 2018 May 11;14 (5):e1007345]. PLoS Genet. 2017;13(5):e1006728. Published 2017 May 12. doi:10.1371/journal.pgen.1006728
Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Hum Mol Genet. 2018;27(20):3641–3649. doi:10.1093/hmg/ddy271
Liu M, Jiang Y, Wedow R, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51(2):237–244. doi:10.1038/s41588-018-0307-5
Pasman JA, Verweij KJH, Gerring Z, et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia [published correction appears in Nat Neurosci. 2019 Jul;22(7):1196]. Nat Neurosci. 2018;21(9):1161–1170. doi:10.1038/s41593-018-0206-1
Kunkle BW, Grenier-Boley B, Sims R, Bis JC, Damotte V, Naj A, et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat Genet. 2019 Mar;51(3):414-430. doi: 10.1038/s41588-019-0358-2.
Wheeler E, Leong A, Liu CT, et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 2017;14(9):e1002383. Published 2017 Sep 12. doi:10.1371/journal.pmed.1002383
Walters RK, Polimanti R, Johnson EC, et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21(12):1656–1669. doi:10.1038/s41593-018-0275-1